

AIM

To provide more sustainable animals through the development & uptake of better animal breeding and reproduction approaches

- Meeting point for professionals in animal genetics, genomics, breeding, reproduction
- Exchange Platform
- Cooperation Platform
- Consortia creating Platform
- Dissemination Platform
- Input EU and National Research Programmes

Contact

www.effab.org

Jan. Venneman@effab.info

FISHBOOST

Dr. Anna Sonesson, coordinator

Hard facts

- FP7-Collaborative Research Project targeted to SMEs- grant agreement No 613611
- February 2014-January 2019
- The contribution of the European Commission is
 €6 million
- 26 partners- ALL work through collaboration Industry & RTD

NO- 2 RTD 1 IND FIN- 1 RTD UK- 1 RTD NL- 2 RTD 1 IND CZ- 2 RTD 1 IND GR- 1 RTD 1 IND E-1 RTD 2 IND I- 1 RTD 1 IND F- 2 RTD 5 IND & 1 NGO

Background

 Globally, ~10% of aquacultue production is based on genetically improved stocks (Gjedrem et al., 2012)

 In Europe, large differences between countries, species etc

Boosting European aquaculture by advancing selective breeding to the next level

What will FISHBOOST do for European aquaculture?

Recording protocols for defining new traits for the breeding goal

- Feed efficiency
- Fillet yield
- Disease
 - Resistance
 - Tolerance
 - Infectivity

Robbert Blonk, IMARES, feed efficiency

Calculate heritability and genetic correlations

- Feed efficiency and fillet yield
 - Indirect measurements
- Winter survival

- PD (V), KHV ((V), VNN (V), Pasteurella (B),
 Sparicotyle chrysophrii (P), FP (B), Scuticociliatosis (P)
- G x multiple feed (veg/marine origin)

Develop the genomics field for the six finfish species

 Genomic architecture for disease resistance traits

- Map genes
- Estimate genomic breeding values
- Genotyping by sequencing techniques

Deliver optimised breeding schemes for six finfish species

- Design
- Genetic parameters
- Evaluation methods
- Economic evaluation of traits
- Perception of producers & representative organisations

Courses and seminars

Autumn 2015

- Tool for setting up base populations
- Tool for constraining rates of inbreeding in aquqculture breeding programs

- Keep informed at <u>www.fishboost.eu</u>
- Contact anna.sonesson@nofima.no

Level 0 No modern breeding programmes.

Level 1 Basic breeding programmes with few traits that are measured directly on selection candidates.

Level 2 Advanced breeding programmes with several traits and routine sib-testing to improve some traits via family selection.

Level 3 Advanced breeding programmes with several traits and routine use of genomic tools to improve accuracy on sib- tested traits.

